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Abstract
Control Variates (CV) is a Variance Reduction technique used in order to shorten simulation experiments. In a previous work we
presented Time-to-idle as a stochastic process strongly correlated with the queue waiting time processes in the di�erent queues
of a polling service discipline network. Time-to-idle sample values are asynchronous with respect to those of queuing times,
that is, they are generated at unpredictable times in an unpredictable order with respect to each other. This inherent
characteristic allows it to be used in a network of queues (through batch means methods and taking care of synchronization
between batches of both processes) but can hinge its performance in the single queue case. In this paper we evaluate its
performance through simulation of the single queue case, comparing it with the service time and/or interarrival time
synchronous random variables in the D/M/1, M/D/1 and M/M/1 queues where actual mean queue waiting times are known. We
observe a slightly lower e�ciency of Time-to-idle CV as was expected and we conclude that new techniques for synchronization
of batches should be explored in order to minimize it.
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1. Introduction

Polling service discipline networks have been presentin the telecommunication arena since the inception ofcomputer local area networks like Token Bus, TokenRing or FDDI. Nowadays polling service discipline isstill pervasive in networks such as Wireless SensorNetworks (Siddiqui et al., 2018), Wireless MetropolitanArea Networks (Yang et al., 2017) or IoT (Guan et al.,2019), for example.
A performance measure of interest when evaluat-ing these systems is the steady state queue waitingtime of packets in each node. This quantity is ran-dom in nature and can be represented by an stochasticprocess W = {Wi; i = 1, . . . ,∞} for each tra�c source,and we assume it is a covariance-stationary process.

As a basic measure of performance, we estimate itsmean—E(W) = W—from the observations of a singlesimulation run generating a sequence of size n andcomputing its average

W [n] ≡ 1n ·
n∑
i=1
Wi (1)

and its con�dence interval for the mean value throughthe batch means method. This method estimates thevariance of (1) through m batches of size l (n = m · l)

Wi
[
l
]
≡ 1l ·

i·l∑
j=(i–1)·l+1

Wj (2)
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under the assumption that {Wi [l] ; i = 1, . . . ,∞} behavesasymptotically as l→ ∞ like a Gaussian renewal pro-cess. We use a simple algorithm due to Law and Carson(1979) for the experiments commented in this paper.This way, after gathering a group of m = 400 batches ofsize l ofW , {Wi [l] ; i = 1, . . . , 400}, we check the amountof autocorrelation; when it is under certain level wemaycompute the con�dence interval over the 40 batchesof size 10 · l, {Wi [10 · l] ; i = 1, . . . , 40}. As a matter offact the sample size needed to comply with a givencon�dence interval requirement will be approximatelyproportional to the variance of the batches once theyare approximately uncorrelated.
In order to reduce the simulation time needed forcomplying with a given con�dence interval require-ment when studying a polling service queue, Suárez-González et al. (2000) proposed a new control variateprocess and measured the performance of a simpleimplementation in a polling service network of queues.
With the goal of gaining a better understandingof its potential and shortcomings, in the presentpaper we compare its performance with respect tostraightforward Control Variates (CV) variables avail-able for the simplest scenario, the single queue model—service time S and interarrival time Υ (S. S. Lavengergand Sauer, 1979)—using the TiTI simulation tool—https://icarus.det.uvigo.es/TiTI/.
In Section 2 we summarize the state of the art ofthe CV method applied to mean value estimation. InSection 3 we explain the use of the Time to idle processas a CV process. In Section 4 we present the results ofthe comparison with the two simple CV variables. InSection 5 we summarize the conclusions derived fromour study and propose future lines of research.

2. State of the art

Although Control Variates (CV) is not restricted to meanvalue estimation—e.g. Portier and Segers (2019), Ortiz-Gracia (2020)—, we will focus on its use with this clas-sical purpose. CV method—see for example Adewunmiand Aickelin (2012)—takes advantage of the knowl-edge about a stochastic process C—with known meanE (C) = C—strongly correlated with W to estimate itsmean, E (W) = W, de�ning the controlled stochasticprocess Y = {Yi; i = 1, . . . ,∞} as
Yi ≡ Wi – β · (Ci – C) (3)

so we hope its average Y [n] will have less variancethan (1). The controlled stochastic process Y with small-est variance is obtained with β∗ = Cov (W ,C)/Var (C). Asthis value is usually unknown, it is estimated through
β̂ [n] from the same samples of W and C used to com-pute W [n] and C [n] in

Y [n] = W [n] – β̂ [n] · (C [n] – C) (4)

As a consequence, although W and C would be renewalprocesses, Y [n] will be in general a biased estimator of
W.
Nevertheless, if (W,C) ≡ {(Wi,Ci); i = 1, . . . ,∞}are i.i.d. and distributed as a multivariate normal,S. S. Lavenberg and Welch (1982) show that (4) is anunbiased estimator of W. They also develop an un-

biased estimator σ̂2Y[n] of Var
(
Y [n]), and show that

(Y [n] –W)/σ̂Y[n] has a Student’s t distribution with n–2degrees of freedom. S. S. Lavenberg and Welch (1982)also show that the loss in potential variance reductionwhen the optimum coe�cient β∗ is estimated by β̂ [n]is (n – 2)/(n – 3).
If W and C are both correlated stochastic processesunder a joint functional central limit theorem assump-tion, Loh (1997) shows, applying the previous resultto m batches of size l (n = l · m) of W and C, that(Y [m, l] –W)/σ̂Y[m,l] behaves asymptotically as l→ ∞

like a Student’s t random variable with m – 2 degreesof freedom. Hence, it is possible to use both controlvariates and batch means methods simultaneously.
Although control variates proposed in the literatureare speci�c of the system being simulated, usually theyare synchronous with the process whose mean is be-ing estimated. In the case of the single server queuethe seminal work of S. S. Lavengerg and Sauer (1979)proposed both the service time S and interarrival time

Υ.

3. Time-to-idle process

Given a task aliquot share of idle time
L ≡ (1 – ρ) · Υ (5)

Suárez-González et al. (2000) de�ne Ti—Time-to-idle—as the amount of time needed to arrive to the idle timeshare of the i-th task from that of the (i – 1)-th one,composing the stochastic process T = {Ti; i = 1, . . . ,∞}of known mean value
E (T) = T = L

1 – ρ = Υ. (6)
Although it shares the same mean value as the inter-arrival time process, it captures the global variation ofload in the polling service discipline due to the mixedvariations in both service time and interarrival timeprocesses for every tra�c in the network.
An advantage of the Time-to-idle process as CV is itswide usability. Although derived in the case of a pollingservice discipline, it just needs a common server sharedsequentially by one or several queues.
A disadvantage of Time-to-idle is its asynchronousnature itself that has to be dealt with, though.

https://icarus.det.uvigo.es/TiTI/
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3.1. Synchronization with W

The ratio of the amount of values (sample size) of Tand that of W, tend to one as the simulated time in-creases. Due to the stochastic nature of the queuingsystems themselves, it will happen that we will havedi�erent amount of values of T and W, and hence wewill have a di�erent number of batches Ti [l] than thatof Wi [l]. Nevertheless, Suárez-González et al. (2000)take advantage of the batch means method to help inthe synchronization, with a simple (not the only onepossible) strategy of �ve points:
1. Using the auxiliary stochastic process K ={
Ki; i = 1, . . . ,∞} where Ki is the instant (simulationclock) when the system has been idle exactly i · L unitsof time. Batches of size l of K are represented by the�rst value of the batch, that is, Ki [l] ≡ K(i–1)·l+1. Thebatches of T are obtained from those of K by di�eren-tiation: Ti [l] = (Ki+1 [l] – Ki [l])/l.2. Each batch Wj [l] is marked with the arrival timeto the queue of its �rst frame, Aj [l] ≡ A(j–1)·l+1, where
A = {Ai; i = 1, . . . ,∞} is the arrival process. Some initialvalues of W can be deleted to limit the impact of thetransient period of the simulation, and we still are ableto synchronize both stochastic processes in an easyway. Moreover, there is no need to begin to constructpairs at the beginning or at the end of both sequences.3. K is stored with smaller batch size (l/2) than W (l),that is, more values of K are stored than batches of
W, and some amount of extra stored values of K areallowed to deal with the non-perfect synchronizationof both processes.4. Matching of both set of batches in pairs begins fromthe middle batch of W, Wm/2 [l], pairing it with thevalue Ki′ [l] nearest to Am/2 [l], and continuing towardboth sides from there.5. The coe�cient β̂ [m′, 10 · l], the variance of the av-
erage σ̂2Y[m′,10·l] and the con�dence interval, are esti-mated with a higher batch size than that used to com-
pute the average Y [m, l] itself (that uses β̂ [m′, 10 · l]estimation).

4. Performance on the single queue

In order to obtain a better understanding of the capabil-ities and limitations of the Time-to-idle as a CV process,the single queue with �rst in �rst out discipline allowsa comparison with more straightforward variables ina scenario of known mean queue waiting time W: theservice time (S) and interarrival time random variables(Υ). It is important to notice that these two randomvariables would loose their straightforward advantagein the single queue (inherent synchronization with thewaiting time and unbiased controlled estimator) whenapplied to the multiple queue polling service discipline.
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Figure 1. Simulation results without CV

We will compare the performance of Time-to-idleagainst service time and/or interarrival time in G/G/1queues with known mean waiting time.We will focus on only the deterministic distributionapart the exponential one since it permits us to isolatethe e�ciency of S and Υ in a best case scenario for them.Hence we will study the M/D/1 and D/M/1 queues.As a �nal comparison for the case where both S and
Υ can be CV candidates, we will study the M/M/1 queue.For each model we do 5000 simulation runs for eachload value ρ ∈ {0.9, 0.95, 0.98, 0.99} with a require-ment of 95% con�dence intervals narrower than ±1%of the average value. We simulate both using a givenCV and no CV at all and then compute:
• the average number of sample size of W in the noCV case and its average reduction when applying CV,and• the actual coverage of the 95% con�dence intervalsfrom the simulations.
During the �rst 20 seconds sample values of W arediscarded to limit any transient period e�ect.
4.1. Case study

All of the models are simulated with Υ = 1 and S varyingfor each ρ.Figure 1 shows for the batch means method withoutCV both 95%-CI for the mean sample size n needed tocomply with the stopping requirement and the 95%-CIfor the actual coverage attained in each model. Samplesize increases as ρ does, as expected. Coverage of the
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Figure 2. Sample size reduction in M/D/1 and D/M/1 with CV

batch means method approaches the 95% requirementbut it is clearly lower. We should point out that itwill produce asymptotically correct ones as batch sizesincreases.
4.1.1. CV on M/D/1 and D/M/1
Figure 2 shows the sample size reduction attained byeach CV process. In the D/M/1 case the service time Sreduces the needed sample size by approximately anadditional 9 percent points with respect to Time-to-idle.A similar result appears for the interarrival time Υ inthe M/D/1 case.
Figure 3 shows the coverage attained by each CVprocess. Only the Time-to-idle 95%-CIs include theasked requirement of 0.95, while both S and Υ sharestheir behavior with the batch means method withoutCV. One possible cause of Time-to-idle arriving to ahigher coverage is due to its use of more sample valueswhen computing the mean value estimator than whenestimating its CI coverage, as commented on item 5 inSection 3.1.

4.1.2. CV on M/M/1
Figure 4 shows the sample size reduction attained byeach CV process in the M/M/1 model. In this case Time-
to-idle achieves a much better reduction than any ofthe other two by itself. Nevertheless, the sum of thereductions achieved by S and Υ, expected to be thereduction achieved when applied both together, wouldmean approximately an additional 4 percent pointswith respect to Time-to-idle alone. Being nearer to theattainable reduction by the straightforward pair when
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Figure 3. Actual coverage in M/D/1 and D/M/1 with CV
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Figure 4. Sample size reduction in M/M/1 with CV

applied together shows the potential of Time-to-idle asa CV process.
Figure 5 shows the same behavior in the M/M/1model already observed in Figure 3, with Time to idleagain the only one attaining the requested coverage.
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Figure 5. Actual coverage in M/M/1 with CV

5. Conclusions

Time-to-idle is a process following the load variationsin a polling service network or any model with queuessharing sequentially a unique server. It is a usefulcontrol variate in order to shorten simulation time.We have compared its e�ciency with respect to thestraightforward variables service time and interarrivaltime in a single queue scenario, where both of themmake sense and are perfectly synchronous.
Studying the M/D/1 and D/M/1 queues allows us toisolate the e�ciency of both competing variables intheir most favorable con�guration. In these queues theasynchronous nature of Time to idle shows itself, with aslightly lower e�ciency with respect to the competingones. Nevertheless, Time-to-idle is the one computingthe more accurate con�dence interval for the meanwaiting time though.
Studying the M/M/1 queue shows that Time-to-idleperforms better than any of the two competing onesalone. Nevertheless, it is expected than using bothof the competing ones at once would attain a slightlyhigher sample size reduction with respect to Time to

idle, although shorter than in the other two queues.Since this is not a clear straightforward result, it couldmean a higher potential of Time-to-idle if a better syn-chronization strategy can be found. We deem a deeperstudy of the synchronization technique of Time-to-idleappropriate for a future work.
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